MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 4
Due on Wednesday, Sep 23

Exercises from the textbook. 3.2-3.4, 3.11, 3.14(a), 3.16, 3.17, 3.22, 3.28 ${ }^{1}, 3.31^{2}$.

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

1. For a subset $A \subseteq \mathbb{N}$, a number $n \in \mathbb{N}$ is called a least element of A if $n \in A$ and for all $m \in A, n \leq m$.
(a) (Uniqueness) Show that the least element is unique, i.e. every subset $A \subseteq \mathbb{N}$ can have at most one least element.
Hint: The statement you want to prove is this:

$$
\forall n, m \in \mathbb{N}[n \text { and } m \text { are least elements of } A \Rightarrow n=m]
$$

Prove this directly.
(b) (Existence) Using the method of induction to prove that every nonempty subset of \mathbb{N} has a least element.
Hint: The statement you want to prove is this:

$$
\forall A \subseteq \mathbb{N}, A \neq \varnothing \Rightarrow A \text { has a least element. }
$$

Prove the contrapositive of the implication, i.e. suppose that A does not have a least element and show that $A=\varnothing$.
2. In class, we proved the Induction Principle (Theorem 3.6) using the definition of \mathbb{N} (Definition 3.5). Give an alternative proof of Theorem 3.6 using the fact (stated above in Problem 1.(b)) that every nonempty subset of \mathbb{N} has a least element.

[^0]
[^0]: ${ }^{1}$ HINT FOR 3.28: To find the formula, write $\frac{1}{i(i+1)}$ in terms of $\frac{1}{i}$ and $\frac{1}{i+1}$, expand the \sum (write the first and last three terms), and notice that many things cancel.
 ${ }^{2}$ Hint for 3.31: To find the formula, write $1-\frac{1}{i^{2}}$ as $\frac{(i-1)(i+1)}{i^{2}}$, expand the Π (write the first and last three terms), and notice that many things cancel.

